

Fiche "Valorisation des résultats des campagnes aéroportées " Campagne d'évaluation 2017

Nom de la campagne : AErosols, RadiatiOn and CLOuds in southern Africa (AEROCLO-sA)

Projet / Programme de rattachement : ANR/LEFE-CHAT/LEFE-PNTS/TOSCA/CNES & EUFAR Domaine scientifique : Atmosphère

Avion : F20

Dates de la campagne : 22 Aug-12 Septembre 2017			
Nombre de jours scientifiques : 8			
Nombre d'heures de vols : 30			
Aéroport(s) : Walvis Bay (Namibia)			
PI (Principal Investigator), Nom, prénom et organisme : Formenti, Paola – LISA, UMR CNRS 7583, Université Paris			
Est Créteil et Paris Diderot & Flamant, Cyrille -LATMOS, UMR 8190 CNRS-UPMC-UVSQ (Coordination des			
opérations avion)			
Nombre de chercheurs et d'enseignants-chercheurs : 9			
Nombre d'ingénieurs et de techniciens : 6			
Nombre d'étudiants : 1			

Fiche remplie par : Paola Formenti

Date de rédaction ou d'actualisation de la fiche : 06/12/2017

Adresse : LISA, Créteil – France

Email : paola.formenti@lisa.u-pec.fr

Tel : 01 45171522

Résumé (20 lignes maximum)

Le projet AErosols, RadiatiOn and CLOuds in Southern Africa (Aeroclo-sA) vise à mieux comprendre le climat d'Afrique australe et plus particulièrement de son pourtour atlantique, souligné par le dernier rapport du Groupe d'experts intergouvernemental sur l'évolution du climat (Giec) comme l'une des régions du globe où changement climatique pourrait être le plus évident.

Aeroclo-sA vise à combler les lacunes dans la modélisation du climat régional, en apportant, à partir de mesures sol et aéroportées dans la colonne atmosphérique, de nouvelles observations des aérosols et de la structure thermodynamique de la couche limite atmosphérique et de la troposphère libre, afin d'évaluer leur représentation dans les modèles climatiques régionaux.

Un deuxième objectif est de fiabiliser la représentation des aérosols au-dessus des terres et au-dessus des nuages, via le développement d'algorithmes innovants permettant de déduire des nouvelles propriétés des aérosols conçus pour les nouvelles missions spatiales, notamment 3MI et lasi-NG sur MetOp-SG.

La campagne expérimentale du projet Aeroclo-sA s'est déroulée du 22 août au 12 septembre 2017 sur la côte Atlantique namibienne, avec le déploiement du Falcon 20 du Service des avions français instrumentés pour la recherche en environnement (Safire) et de la station mobile au sol Portable Gas and Aerosol Sampling Units (Pegasus) du Laboratoire interuniversitaire des systèmes atmosphériques (LISA) Dix vols du Falcon 20 ont été effectués depuis l'aéroport international de Walvis Bay (Namibie), pour un total de 30 heures de vol scientifique. En parallèle, la station mobile au sol Pegasus a fonctionné sur le campus du centre de recherche Sanumarc de l'université de Namibie à Henties Bay (22°6'S, 14°30'E).

Résultats majeurs obtenus

(maximum 5 pages)

1 – Contexte scientifique et programmatique de la campagne

Le projet AErosols, RadiatiOn and CLOuds in Southern Africa (Aeroclo-sA) vise à mieux comprendre le climat d'Afrique australe et plus particulièrement de son pourtour atlantique, souligné par le dernier rapport du Groupe d'experts intergouvernemental sur l'évolution du climat (Giec) comme l'un des régions du globe où changement climatique pourrait être le plus évident.

En raison de la faible température des eaux de surface le long des côtes d'Afrique australe, cette région est caractérisée par des nuages de type stratocumulus marins, quasi permanents et localisés dans la couche limite marine, dont la formation est soutenue par les eaux de surface de l'océan Atlantique. Les de nuage stratiformes représentent le régime de nuages le plus efficace pour réfléchir le rayonnement solaire vers l'espace, induisant ainsi un effet radiatif négatif significatif au sommet de l'atmosphère, opposé à celui exercé par les gaz à effet de serre. Les propriétés microphysiques et optiques de ces stratocumulus affectent les gradients de température des eaux de surface de l'océan Atlantique et le bilan d'énergie à grande échelle, qui déterminent la position de la zone de convergence intertropicale, et donc les moussons d'Afrique de l'Ouest et d'Asie.

Cette région est également caractérisée par de fortes charges en aérosols. En effet, l'Afrique australe est la plus importante source mondiale d'aérosols de feux de biomasse, qui se développent pendant la saison sèche de l'hémisphère Sud. Aussi, des étendues désertiques, notamment les déserts d'Etosha Pan et du Namib en Namibie, contribuent à l'émission de poussières, alors que l'upwelling du Benguela, parmi les plus productifs au monde en nutriments, contribue aux échanges de matière entre l'océan et l'atmosphère.

Or, les aérosols et les nuages sont des composantes essentielles du climat régional en Afrique australe, dont les effets sur le bilan radiatif (à travers leurs forçages direct, semi-direct et indirect) sont aujourd'hui très mal connus. En effet, il est désormais avéré que les incertitudes liées à la représentation de leurs propriétés (microphysiques/optiques) dans les modèles de climat, et donc leur contribution au bilan radiatif régional, sont très importantes et affectent nos capacités de prévision du climat de cette région. En particulier, les modèles suggèrent que, dans cette région du monde, la présence d'aérosols absorbants de feux de biomasse transportés au-dessus des stratocumulus pourrait réduire le flux radiatif au sommet de l'atmosphère, au lieu de l'augmenter, provoquant ainsi un réchauffement régional comme le font les gaz à effet de serre.

Les problèmes rencontrés dans la modélisation du climat au niveau de l'Atlantique sud-tropical, notamment liés à la représentation des propriétés radiatives et microphysiques des aérosols et des nuages et à celle de la dynamique atmosphérique, sont en partie dus au faible nombre d'observations disponibles sur cette région.

2 – Rappel des objectifs

Aeroclo-sA vise à combler les lacunes dans la modélisation du climat au niveau de l'Atlantique sudtropical, en apportant, à partir de mesures sol et aéroportées dans la colonne atmosphérique, de nouvelles observations des aérosols et de la structure thermodynamique de la couche limite atmosphérique et de la troposphère libre, afin d'évaluer leur représentation dans les modèles climatiques régionaux.

Un deuxième objectif est de fiabiliser la représentation des aérosols au-dessus des terres et au-dessus des nuages, via le développement d'algorithmes innovants permettant de déduire des nouvelles propriétés des aérosols conçus pour les nouvelles missions spatiales, notamment 3MI, héritier de Polder-3, et lasi-NG, héritier de IASI, sur MetOp-SG. Ce type de produit est en effet nécessaire pour acquérir une bonne représentation régionale des aérosols et pour étudier les tendances temporelles, comme leur variabilité interannuelle.

3 – Données acquises et analyses effectuées

La campagne expérimentale du projet Aeroclo-sA s'est déroulée du 22 août au 12 septembre 2017 sur la côte Atlantique namibienne, avec le déploiement du Falcon 20 du Service des avions français instrumentés pour la recherche en environnement (Safire) et de la station mobile au sol Portable Gas and Aerosol Sampling Units (Pegasus) du Laboratoire interuniversitaire des systèmes atmosphériques (LISA), illustré en Figure 1.

Figure 1. A gauche : La station mobile au sol Pegasus du Lisa positionné à la station d'Henties Bay. Pegasus est un ensemble de deux conteneurs multi-instrumentés pour l'observation des gaz et des aérosols atmosphériques. On distingue le mât météorologique ainsi que des veines orientables au vent pour le prélèvement isocinétique à haut volume des aérosols, ainsi que les têtes de prélèvement pour les gaz. A droite : Le *Falcon 20* de Safire prêt au décollage sur la piste de l'aéroport international de Walvis Bay, à 130 km au sud de Henties Bay.

Dix vols du Falcon 20 ont été effectués depuis l'aéroport international de Walvis Bay (Namibie), pour un total de 30 heures de vol scientifique. Le Falcon 20 était équipé du lidar LNG (Leandre, nouvelle génération) développé au Latmos (Laboratoire atmosphères, milieux, observations spatiales) et opéré avec le soutien de la division technique Insu, permettant de « profiler » l'atmosphère à trois longueurs d'onde (355, 532 et 1 064 nm) afin d'analyser la structure et les caractéristiques radiatives des panaches d'aérosols. Il embarquait également les instruments Micropol-UV et Osiris développés au Laboratoire d'optique atmosphérique (LOA), mesurant les luminances totales et polarisées à plusieurs longueurs d'onde de l'ultraviolet jusqu'à l'infrarouge moyen. Osiris est le démonstrateur aéroporté du futur capteur embarqué 3MI. Aeroclo-sA a été aussi l'occasion d'embarquer pour la première fois le photomètre solaire Plasma à bord du Falcon 20, pour mesurer l'extinction par les aérosols au-dessus et entre les stratocumulus. Le système de largage de dropsondes, les instruments radiométriques (pyranomètre et pyrgéomètre en visées haute et basse, radiomètre infrarouge Climat), les sondes de pression, température, humidité et vent, et les capteurs optiques de microphysiques des nuages et des aérosols opérés par Safire, ont complété la charge utile du Falcon 20.

La planification des opérations aéroportées a été facilitée par la mise en place d'une chaîne opérationnelle de prévision de Meso-NH (modèle à méso-échelle non hydrostatique à 5 km de résolution) des événements de poussières et de feux de biomasse dans la zone d'étude, exploitée par le Laboratoire d'aérologie (LA). Les prévisions ont été mises à disposition sur le site http://aeroclo.sedoo.fr/ créé par le Service des données national Aeris.

La station mobile au sol Pegasus a fonctionné sur le campus du centre de recherche Sanumarc de l'université de Namibie à Henties Bay (22°6'S, 14°30'E), qui héberge déjà depuis 2012 un site d'observation de long terme piloté par le Lisa en collaboration avec l'université de Namibie et la NorthWest University en Afrique du Sud. Pegasus est équipé de veines de prélèvements isocinétiques pour les aérosols et les gaz atmosphériques. La composition chimique des aérosols a été étudiée par un ensemble instrumenté incluant des prélèvements sur filtre, un spectromètre de masse à temps de vol (c-Tof-AMS) de l'Institut de recherches sur la catalyse et l'environnement de Lyon (Ircelyon), un instrument de type Particle Into-Liquid sampler (Pils) couplé à un chromatographe ionique double-voie opéré par le LISA, et un Single Particle Soot Photometer (SP2) opéré par le Centre national de recherches météorologiques (CNRM) pour mesurer, par incandescence, la présence de carbone suie dans les particules. Les concentrations en nombre et en masse, la distribution en taille, les propriétés optiques de diffusion, extinction et absorption, les propriétés hygroscopiques et les spectres d'activation des aérosols

en gouttelettes nuageuses ont été également mesurées en continu. Le dispositif au sol a été complété par des mesures de distribution en taille des gouttelettes, par une station météorologique et deux lidars, dont le système MPL géré par le Goddard Space Flight Center (GSFC) de la Nasa. Le site de Henties Bay fait partie du réseau de photomètres Aeronet/Photons, fortement développé en Namibie ces dernières années pendant la préparation de la campagne. Des prélèvements d'eau du nuage stratiforme ont également été effectués par le Laboratoire de chimie de l'environnement (LCE) et l'Arizona State University (ASU), lors d'événements observés au sol pour une caractérisation chimique off-line.

4 – Principaux résultats obtenus (avec quelques illustrations)

Au cours de la campagne, la couche limite marine était caractérisée par des faibles températures et de forts vents qui ont favorisé les émissions primaires de particules depuis l'océan, fournissant un niveau de fond riche en particules de sels de mer. Plusieurs épisodes de transport de masses d'air oxydées, caractérisées notamment par des particules de sulfate d'origine non marine et d'aérosols organiques oxydés, ont été détectés. Les observations au sol ont également permis de mettre en évidence des épisodes répétés de formation de nouvelles particules en lien avec les périodes d'ensoleillement, même brèves (Figure 2).

Figure 2. Dynamique temporelle de la distribution en taille de la fraction fine des aérosols observée dans la couche limite marine par l'instrument SMPS dans Pegasus à Henties Bay. (haut) Le 28 août 2017 était caractérisé par des forts vents provenant du nord-ouest et atteignant 6 m s⁻¹ dans l'après-midi. L'aérosol est essentiellement d'origine maritime, probablement primaire en lien avec le *sea spray* provoqué par les vents forts. Sa distribution en taille est caractérisée par deux modes intenses et persistants, centrés à 50 et 200 nm. (bas) Le 6 septembre 2017, le vent tourne plutôt au sud, longeant davantage la ligne côtière. Les modes granulométriques à 50 et 200 nm sont affaiblis. On observe deux phénomènes supplémentaires : un épisode de formation de nouvelles particules à partir de 11 h UTC, clairement identifiable par l'augmentation de la concentration en particules dans la limite basse du domaine d'observation (10 nm), puis par la croissance progressive de leur taille jusqu'à 20 nm à environ 13 h, quand l'arrivée soudaine d'un nuage stratiforme lessive complément les aérosols dans l'air provoquant ainsi la baisse abrupte des concentrations observées. © T. Bourrianne, CNRM, CNRS/Météo-France ; J.-F. Doussin, LISA/IPSL ; M. D. Mallet, Ircelyon, CNRS/Université de Lyon 1.

Les mesures à la station ont montré que les aérosols avaient une forte propension à adsorber la vapeur d'eau atmosphérique, appuyant l'idée qu'ils pourraient jouer un rôle comme noyaux de condensation qui sous-tendent la formation des stratocumulus marins. En parallèle, les observations aéroportées ont permis de documenter l'évolution des propriétés radiatives des panaches de feux de biomasse et des

poussières désertiques transportés dans la troposphère libre depuis les zones sources, autour de l'Etosha Pan en Namibie, jusqu'à l'océan. Le mélange entre ces types d'aérosols et la formation de nuages au sein de ces panaches chauds et humides a pu être observé (Figure 3).

Figure 3. (a) Flux d'émission de poussières au-dessus de la Namibie (couleur) et champ de vent à 10 m issus de la prévision Meso-NH (5 km de résolution horizontale) à 09 h 00 UTC le 5 septembre 2017. Le trait noir matérialise la trace au sol du Falcon 20 au cours du vol entre 07 h 36 et 10 h 14 UTC. Les points bleus et turquoise représentent la position des cinq dropsondes larguées au cours du vol. (b) Profils de température potentielle (noir) et humidité relative (rouge) obtenus à partir de la dropsonde n° 2 (08 h 40 UTC, point turquoise en (a)). (c) comme (b) mais pour la vitesse du vent (noir) et la direction du vent (rouge). (d) Coefficient de rétrodiffusion atmosphérique à 1 064 nm en fonction de l'altitude obtenue sous l'avion à partir du lidar LNG. On y distingue la couche d'aérosols de feu de biomasse entre 2 et 6 km ainsi que les soulèvements de poussières sur l'Etosha Pan. On peut également observer la présence de stratocumulus sur l'océan. La couche d'aérosols au-dessus des stratocumulus résulte du transport des poussières depuis Etosha. Au-dessus de l'océan, cette couche de poussières est séparée de la couche d'aérosols de feu de biomasse par une couche beaucoup moins chargée en particules. Les données dropsondes indiquent que la couche d'aérosols de feu de biomasse est advectée depuis le nord-ouest au-dessus d'Etosha. On distingue également la présence d'un jet de basse couche du nord d'une intensité de 17 m s–1 vers 1,7 km au-dessus du niveau de la mer (400 m au-dessus du sol) à l'origine des soulèvements de poussières. © C. Flamant, Latmos/IPSL et J.-P. Chaboureau, LA.

Ces observations ont également permis d'étudier les émissions d'aérosols terrigènes le long de la côte namibienne. La campagne aéroportée a bénéficié d'une situation météorologique particulièrement favorable, favorisant le transport des aérosols le long de la côte namibienne dans le rayon d'action du Falcon 20. Une couche d'aérosol de feux de biomasse de 3 à 4 km d'épaisseur en provenance de l'Angola (Figure 4) a pu être documentée in situ et à l'aide des instruments de télédétection au-dessus de différents types de surfaces océaniques (ciel clair et en présence de stratocumulus) et terrestres (désert, lac asséché, c'est-à-dire surface fortement réfléchissante).

Figure 4. Sur cette photo, prise depuis l'avion le 5 septembre 2017, on peut voir un « océan » de particules de feux de biomasse surplombant la Namibie. L'épaisseur optique en aérosols est de 1,5 à 500 nm à Windpoort (nord du pays). Du fait de cette énorme quantité d'aérosol, il est impossible de voir le sol. On constate que la présence d'humidité au sommet des panaches de particules de biomasse permet à des nuages de se former au sommet (vers 6 km d'altitude). © F. Blouzon, DT-Insu/CNRS.

L'influence des aérosols de biomasse sur le rayonnement réfléchi par les nuages stratiformes a pu être clairement observée par les mesures de luminance spectrale, totale et polarisée (Figure 5), qui serviront de base de travail aux développements algorithmique futures.

OSI_L1A_VIS_0013_24834534_AEROCLO_2017-09-05T09-35-03_V0-10.hdf (RGB 870nm_NP,670nm_NP,490nm_NP)

Ø

Figure 5.: Compositions colorées réalisées à partir (a) des luminances totales et (b) des luminances polarisées des canaux 490, 670 et 865 nm observées par l'instrument Osiris au-dessus d'une scène nuageuse. Les cercles concentriques représentent les isocontours d'angle de diffusion par pas de 10°. En luminance totale (a), les nuages rétrodiffusent fortement le rayonnement, ce qui produit un signal intense. Son amplitude est modulée par l'épaisseur optique du nuage dans le domaine visible. En polarisation (b), on observe une forte signature angulaire du signal, caractéristique de la diffusion du rayonnement par les gouttelettes sphériques. La structure principale est le pic de polarisation autour de 140° qui forme un cercle sur la figure. C'est l'arc primaire, une caractéristique des nuages d'eau liquide, qui correspond typiquement à un signal polarisé intense, présentant une faible dépendance spectrale. La figure montre que l'arc primaire est ici assombri et prend une couleur brune à cause de la présence d'aérosols localisés au-dessus du nuage. Les aérosols atténuent ici le signal réfléchi par le nuage dans la région de l'arc-en-ciel. De par leur taille (rayon granulométrique de 0,1 □m), les particules de brûlis présentent une épaisseur optique qui diminue rapidement avec la longueur d'onde. On observe ainsi une variation spectrale de l'atténuation pour ces aérosols, ce qui entraîne une modification de la couleur apparente de l'arc. Pour des angles de diffusion inférieurs à 100°, la diffusion par ces petites particules, localisées au-dessus du nuage, polarise très efficacement le rayonnement et on observe également une création de polarisation (visible dans la partie inférieure gauche de l'image). La création de polarisation par diffusion et l'atténuation spectrale de l'arc sont les deux effets qui permettent la détection des aérosols localisés au-dessus des nuages à partir d'un instrument de type 3MI. © F. Waguet et J.-M. Nicolas, LOA.

Tableau récapitulatif

		Nombre
1	Publications d'articles originaux dans des revues avec comité de lecture référencées dans <u>JCR</u> (<i>Journal Citation Reports</i>) (ajouter des lignes si nécessaire)	5
	Année n+1 :	
	Année n+2 :	
	Année n+3 :	
	Année n+4 :	-
	Année n+5 :	
	Année n+6 :	
	Année n+7 :	
	Total	
2	Publications dans d'autres revues ou ouvrages scientifiques faisant référence dans le domaine	0
3	Publications sous forme de rapports techniques	0
4	Articles dans des revues ou journaux « grand public »	1
5	Communications dans des colloques internationaux	8
6	Documents vidéo-films	0
7	DEA ou MASTER 2 ayant utilisé les données de la campagne	0
8	Thèses ayant utilisé les données de la campagne	0
9	Transmission à une banque de données	Oui – en cours
11	Lien vers la banque de données	http://baobab.sedoo.fr/AERO CLO/
12	Considérez-vous la publication des résultats terminée ? Si en cours, préciser et donner les échéances	Exploitation en cours jusqu'à 2021 au moins

METEO FRANCE

Références

R1 - Références des publications d'articles originaux dans des revues avec comité de lecture référencées dans <u>JCR</u> (vérifier dans la base « Journal Citation Reports » via « ISI Web of Knowledge » si les revues sont bien référencées) et <u>résumés des principales publications</u>, (Les classer par années croissantes), en précisant les DOI.

- Formenti, P., B. D'Anna, C. Flamant, M. Mallet, S.J. Piketh, K. Schepanski, F. Waquet, F. Auriol, G. Brogniez, F. Burnet, J. Chaboureau, A. Chauvigné, P. Chazette, C. Denjean, K. Desboeufs, J. Doussin, N. Elguindi, S. Feuerstein, M. Gaetani, C. Giorio, D. Klopper, M.D. Mallet, P. Nabat, A. Monod, F. Solmon, A. Namwoonde, C. Chikwililwa, R. Mushi, E.J. Welton, and B. Holben, 0: The Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) field campaign in Namibia: overview, illustrative observations and way forward. Bull. Amer. Meteor. Soc., 0, https://doi.org/10.1175/BAMS-D-17-0278.1
- Mallet, M., Nabat, P., Zuidema, P., Redemann, J., Sayer, A. M., Stengel, M., Schmidt, S., Cochrane, S., Burton, S., Ferrare, R., Meyer, K., Saide, P., Jethva, H., Torres, O., Wood, R., Saint Martin, D., Roehrig, R., Hsu, C., and Formenti, P.: Simulation of the transport, vertical distribution, optical properties and radiative impact of smoke aerosols with the ALADIN regional climate model during the ORACLES-2016 and LASIC experiments, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1218, in review, 2018.
- LeBlanc, S. E., Redemann, J., Flynn, C., Pistone, K., Kacenelenbogen, M., Segal-Rosenheimer, M., Shinozuka, Y., Dunagan, S., Dahlgren, R. P., Meyer, K., Podolske, J., Howell, S. G., Freitag, S., Small-Griswold, J., Holben, B., Diamond, M., Formenti, P., Piketh, S., Maggs-Kölling, G., Gerber, M., and Namwoonde, A.: Above Cloud Aerosol Optical Depth from airborne observations in the South-East Atlantic, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-43, in review, 2019.
- Mallet, M., Solmon, F., Roblou, L., Peers, F., Turquety, S., Waquet, F., Torres, O. (2017). Simulation of optical properties and direct and indirect radiative effects of smoke aerosols over marine stratocumulus clouds during summer 2008 in California with the regional climate model RegCM. Journal of Geophysical Research: Atmospheres, 122. https://doi.org/10.1002/2017JD026905CL01
- Zuidema, P., J. Redemann, J. Haywood, Wood, S. Piketh, M. Hipondoka, and P. Formenti, 2016: Smoke and Clouds above the Southeast Atlantic: Upcoming Field Campaigns Probe Absorbing Aerosol's Impact on Climate. Bull. Amer. Meteor. Soc., 97, 1131–1135, doi: 10.1175/BAMS-D-15-00082

R2 – Références des publications parues dans d'autres revues ou des ouvrages scientifiques faisant référence dans la discipline. (Les classer par année).

R3 – Références des rapports techniques. (Les classer par année).

R4 – Références des articles parus dans des revues ou des journaux « grand public ». (Les classer par année).

• Formenti, P. (2017). Le projet Aerosols, radiation and clouds in Southern Africa (Aeroclo-sA), La Météorologie, 99, – DOI : 10.4267/2042/63581

R5 – Références des communications dans des colloques internationaux. (Les classer par années croissantes).

AGU Fall Meeting 2018, Washington DC, 10-14 December 2018

• Chauvigné, A., F. Waquet, F. Auriol, L. Blarel, C. Delegove, O. Dubovik, C. Flamant, P. Formenti, P. Goloub, R. Loisil, M. Mallet, J.-M. Nicolas, F. Peers, B. Torres and F. Parol, Aerosol and cloud properties through 3MI airborne simulator measurements: AEROCLO-sA field campaign in the Namibian region, oral presentation

2018 joint 14th iCACGP QS/15th IGAC SC, Takamatsu, Japan, 25-29 September 2018

- Formenti, P., B. D'Anna, C. Flamant, M. Mallet, S. J. Piketh, K. Schepanski, F. Waquet, and the AEROCLO-sA team, The Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) project: overview, research highlights and way forward, poster presentation
- Elguindi, N., F. Solmon, and M. Mallet, Aerosol-cloud-radiation interaction along the western coast of southern Africa as simulated by a regional climate model, poster presentation

9th International Workshop on Sand / Dust storm and Associated Dustfall, Tenerife, Spain 22-24 May 2018

- S. Feuerstein, K. Schepanski, C. Flamant, F. Waquet, B. Laurent, P. Chazette, B.N. Holben, E.J. Welton, and P. Formenti,Modelling Namibian dust emission in the framework of AEROCLO--sA, oral presentation
- Formenti, P., B. D'Anna, C. Flamant, M. Mallet, S. J. Piketh, K. Schepanski, F. Waquet, and the

AEROCLO-sA team, The Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) project: overview, research highlights and way forward, poster presentation

European Geosciences Union General Assembly 2018, Vienna, Austria, 8–13 April 2018

Various oral and poster presentation at the Special session AS1.40 Aerosols, radiation and clouds over the southeast Atlantic. Convener: Paola Formenti. Co-Conveners: J.M. Haywood, SJ Piketh, J. Redemann, P. Zuidema

R6 – Liste des documents vidéo-films. (Les classer par année).

R7 – DEA ou MASTER 2 ayant utilisé les données de la campagne (Nom et Prénom de l'étudiant, Laboratoire d'accueil. Sujet du DEA ou MASTER, Date de soutenance)

R8 – Thèses ayant utilisé les données de la campagne (Nom et Prénom de l'étudiant, Laboratoire d'accueil. Sujet de la thèse, Date de soutenance)

R10 – Liste des données transmises (Préciser les destinataires, SEDOO, autres banques de données, équipes scientifiques ...)

http://baobab.sedoo.fr/AEROCLO/

R11 – Liste des résultats restant à publier – échéance

AETEO

